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a b s t r a c t

The Blaine number of iron ore concentrate is a key parameter in the iron and steel chain, especially pel-
letizing. In this study, a novel and comprehensive strategy was introduced for modelling and estimating
the Blaine number of iron ore concentrate by using the particles physical properties (particles size distri-
bution and shape)-based Response Surface method and Monte Carlo simulation. The proposed strategy
was implemented for modelling the Blaine number of concentrate produced in an industrial iron ore pro-
cessing plant. Then, the obtained model was validated by using industrial data. The results showed that
the proposed strategy and obtained model can be used as a powerful technique for modelling and rela-
tively accurate predicting the Blaine number of iron ore concentrate produced in industrial plants and a
suitable alternative to the conventional measurement methods.
� 2023 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.
1. Introduction

The Blaine number of iron ore concentrate is one of the most
important parameters for controlling the pelletizing process in
the iron and steel industry [1–4]. The specific surface area (SSA)
of powder materials or Blaine number is defined as quotient of
the available surface inclusive of all open inner surfaces divided
by the mass (cm2 g�1), and measured based on the air permeability
of a packed bed of particles [5,6].

The lower and the higher Blaine number refers to the coarser
and the finer size of concentrate particles, respectively. The iron
ore concentrate with the higher Blaine number causes problem
in pellets making [1,2]. Moreover, it requires the higher grinding
energy during preparation to achieve the required Blaine fineness
[7]. The iron ore concentrate with the lower Blaine number doesn’t
provide the sufficient strength both to the green and indurated pel-
lets [8]. Therefore, the relatively accurate prediction of Blaine num-
ber in the shortest possible time is necessary to control and
optimize the production process of iron ore concentrate with
desired Blaine number and consequently, pellets with required
quality. Accordingly, it is necessary to find a mathematical model
that can predict the Blaine number in the shortest possible time.
However, this depends on the simplicity and the measurement
duration of model’s parameters [9]. Although there are many
researches about the effect of Blaine number on the pelleting pro-
cess and the pellets quality [1,2,8,10–12], few researches have
investigated the effect of different parameters on the Blaine num-
ber of iron ore concentrate.

Abazarpoor et al. (2018) studied the effect of high-pressure
grinding rolls (HPGR) operational parameters including the feed
moisture, the specific pressure and the roll speed on the dimen-
sional properties of pellet feed using factorial methodology. They
found that increasing the specific pressure and decreasing the roll
speed would increase the Blaine number. Moreover, according to
their findings, the feed moisture of HPGR had the least effect on
the Blain number [13]. Accordingly, it can be concluded that the
specific pressure and the roll speed parameters affect two physical
characteristics of particles, i.e., the particles size distribution and
the shape. In the other words, the particle size distribution and
the shape control the Blaine number.

Hosseini Nasab and Sadeghi (2020) investigated the effect of the
particles size distribution and the mineral type on the Blaine num-
ber of iron ore concentrate. They found that increasing the percent-
age of particles finer than 45 lm resulted in higher Blaine
numbers. Moreover, the presence of clay minerals in the iron ore
concentrate led to an increase in the Blaine number [14]. Accord-
ingly, it can be concluded that the presence of clay minerals led
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to change of the Blaine number due to their size distribution and
shape. In other words, clay minerals are often characterized by
their small size, plate-like shape (e.g., Kaolinite), and large specific
surface, which their small size can explain their high Blaine num-
ber [14].

Therefore, two particles physical properties including the parti-
cles size distribution and the shape are the most important param-
eters controlling the Blaine number of iron ore concentrate. Zhang
and Napier-Munn (1995) proposed a model based on particle size
distribution to predict the surface area of spherical particles. Appli-
cations of this model have showed good description of Blaine num-
ber of particles with regular geometric shapes [15].

Generally, there are three ways of experimental determining
the Blaine number: the international standard of ISO 21283 [16],
the ASTM C204-16 [17], and the volumetric static multi-point
method known as the BET (Brunauer–Emmett–Teller) method
[18]. Currently, the most common method of determining the
Blaine number of iron ore concentrate in the laboratory of iron
ore mines is ISO 21283 by Blaine meter. The experimental methods
of determining the Blaine number have fundamental limitations,
and the existence of a mathematical model to replace the experi-
mental methods is very necessary. The most important limitations
are as following:

� A large number of daily samples to determine the Blaine
number;

� The long time required for the determination of Blaine number
from sample preparation to Blaine test [16];

� The presence of human and systematic errors;
� High consumption of expensive CRM (Certified Reference Mate-
rial) per month due to daily calibration of the Blaine meter:
according to our experience and observation in the laboratory,
it’s noticeable that CRM can only be used once and if it is used
again, the Blaine number decreases and it lacks accuracy and
validity; According to our observation, the possible reason for
this is that the fine particles of CRM stick to the mouth of the
funnel after each use and as a result, by removing the fine par-
ticles, the Blaine number of the used CRM is reduced.

� The sensitivity of the Blaine meter to the environmental condi-
tions such as moisture and temperature [16].
Fig. 1. The flowsheet of iron ore processing plant, G
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According to some research [10,13–15,19,20], the well-known
models, due to simplification, are only applicable for predicting
the Blaine number of particles with the regular geometric shapes.
In this study, with the aim of removing the mentioned limitations,
a comprehensive strategy for modeling and predicting the Blaine
number of iron ore concentrate depending on the physical nature
of the particles by Response Surfacemethodology (RSM) andMonte
Carlo simulation has been proposed. The RSMwas used as a power-
ful statistical method for finding the most suitable functional rela-
tionship, especially non-linear, between the independent variables
(i.e., the parameters controlling the Blaine number of iron ore con-
centrate in each particle size fraction) affecting the Blaine number.
The Monte Carlo simulation was used for the sensitivity and relia-
bility analysis of the final model. The obtained model has been val-
idated with samples and data collected from iron ore processing in
Gohar Zamin Iron Ore Company, Gol-e-Gohar Mining & Industrial
Company, and Chadormalu Mining and Industrial Company. It’s
noticeable that the production process of iron ore concentrate is
similar in all three companies in order to ensure: (1) the same con-
ditions of data production, and (2) the possibility of directly using
the results of the final model presented in the factories with similar
processes (no need to calibrate the model). For example, the type
and number of grinding steps affect the Blaine number [21].
2. Materials and methods

2.1. Process description of iron ore processing plant

The iron ore processing plant of Gohar Zamin Iron Ore Com-
pany, which is located in the Gol-e-Gohar mine No. 3 (Sirjan–Iran),
consists of five units (Fig. 1): (1) the primary crushing unit consists
of a Gyratory crusher to reduce the particles size to less than
300 mm; (2) the secondary crushing unit consists of several cone
crushers to reduce the particles size to less than 50 mm; (3) the
grinding unit consists of a high-pressure grinding roll (HPGR)
and a ball mill to produce the product with d80 less than
115 lm; (4) the magnetic separation unit consists of cobber,
roughers and cleaners; and (5) the dewatering unit to produce
the iron ore concentrate with a moisture less than 8 %.
ohar Zamin Iron Ore Company (Kerman, Iran).
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2.2. Sample preparation and characterization

About 800 kg the iron ore concentrate was prepared from the
iron ore processing plant within a month. It was divided into two
equal portions after homogenization. One portion was reserved
to implement the proposed strategy and separate the different size
fractions. For sample characterization, the other portion was riffled
to prepare the representative sub-samples by using a sample divi-
der (PT 600, Retsch GmbH, Haan, Germany). The representative
sub-samples for the elemental composition analysis and the phase
identification were ground by a vibratory disc mill (Retsch, RS 200).
The elemental composition was measured by the x-ray fluores-
cence (XRF) spectroscopy technique (ARL 9900, Thermo Fisher
Company). It’s noticeable that the sulfur percentage was measured
by Carbon / Sulfur Analyzer ELEMENTRAC CS-i (ELTRA GmbH). The
phase identification was done by X-ray powder diffraction (XRD)
system (Philips-Xpert Pro). A representative sub-sample was used
for the examination and analysis of the sample morphology by
scanning electron microscope (SEM, TESCAN). Moreover, control-
ling the particle size distribution of the samples in the repetition
tests and ensuring the similarity of them was done using a CAMSI-
ZER�P4 (Microtrac Retsch GmbH).
2.3. The method of measuring the Blaine number in the laboratory

Measuring the Blaine number by Blaine meter is performed
according to ISO 21283 [16], which is based on the time required
to pass a certain volume of air through a packed bed of particles
with given size and porosity. A schematic view of the Blaine meter
and its components is shown in Fig. 2. The method of measuring
the Blaine number of iron ore concentrate in the laboratory con-
sists of four consecutive steps [16] (Fig. 3): (1) the sample prepara-
tion; (2) the measurement of sample density; (3) the
determination of sample mass; and (4) the measurement of Blaine
number. Sampling and preparation of a test sample are performed
in accordance with ISO 3082 [22].

In the first step, the obtained sample of iron ore concentrate is
placed in the oven (Memmert’s model variant TwinDISPLAY) to
Fig. 2. A schematic view of the Blaine meter and its components; The accurately weighed
to produce a packed bed with the desired porosity. The air is slowly evacuated until the liq
the bottom of the meniscus of the manometer liquid reaches the b line and stopped wh
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constant its mass at 105 �C ± 5 �C (the difference in mass between
two subsequent measurements is less than 0.05 % of the initial
mass of sample.). About 300 g representative sample is obtained
by a sample divider (PT 600, Retsch GmbH, Haan, Germany). After
sieving the representative sample on a 1 mm sieve (Retsch), about
50 g of the minus 1 mm material is obtained by riffling. The
obtained sample is disaggregated on a 150 lm sieve. Then, the
material retained and passing on the 150 lm sieve is mixed and
homogenized. In the second step, the actual density of the pre-
pared sample is measured by a Gas Pycnometer (Micromeritics
AccuPyc II 1345). According to ISO 21283 [16], the porosity value
of iron ore concentrate is considered to be 0.5. In the third step,
the required mass of sample (ms) for producing a sample bed with
the specified porosity (i.e., 0.5) can be calculated as following [16]:
ms ¼ qsVB 1� esð Þ ð1Þ
where es is the sample bed porosity (ratio of the volume of voids in
the bed to the bulk volume of the bed sample [16]), qs is the sample
density (g cm�3), and VB is the bulk volume of the sample com-
pacted bed (cm3). In the final step, the Blaine number is measured
using a Blaine meter (Model 7201, Toni Technik Baustoffprüfsys-
teme GmbH). In order to calculate the Blaine number, according
to ISO 21283 [16], the equipment constant must first be determined
using a Certified Reference Material (CRM; e.g., NIST 114q Portland
cement).

For this work, the permeability cell containing the CRM bed is
attached to the manometer tube. Using the rubber pear, the air is
slowly evacuated in one arm of the U-tube manometer until the
liquid reaches the a line, and then the valve is tightly closed,
enabling the liquid column to go down. The liquid is allowed for
30 s to run down the walls and then the pressure device is with-
drawn, enabling the liquid column to go down. The timer is started
when the bottom of the meniscus of the manometer liquid reaches
the b line and stopped when the bottom of the meniscus of liquid
reaches the c line. This time interval and the temperature of the
test are recorded. At least three determinations of the time interval
are conducted (keeping the same compacted bed) and computed
mass of sample is poured into the permeability cell and compacted with a plunger
uid reaches the a line, and then the valve is tightly closed. The timer is started when
en it reaches the c line.



Fig. 3. The steps of measuring the Blaine number in the laboratory according to ISO 21283.
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their arithmetic mean. The equipment constant, K, is calculated as
following [16]:

K ¼ Bcqc 1� ecð Þ ffiffiffiffiffiffilc
pffiffiffiffiffiffiffiffi

e3c tc
p ð2Þ

where Bc is the certified Blaine number of the CRM (cm2 g�1), qc is
the CRM density (g cm�3), ec is the CRM porosity (i.e., 0.5), lc is the
viscosity of air at the temperature of test (lPa s), and tc is the mea-
sured time interval of the liquid column drop in the manometer arm
(s). After determining the equipment constant and repeating the
previous three steps for sample, the Blaine number of sample, Bs,
is calculated as following equation [16]:

Bs ¼ K
qs 1� esð Þ

ffiffiffiffiffiffiffiffi
e3s ts
ls

s
ð3Þ

where ls is the viscosity of air at the temperature of test (lPa s),
and ts is the measured time interval of the liquid drop in the
manometer arm (s). It’s noticeable that, in the present study, all
Blaine tests were performed with three repetitions and the maxi-
mum allowable repeatability of 30 cm2 g�1 (ISO 21283).

2.4. The proposed strategy for modelling the Blaine number

As mentioned in the section of sample preparation and charac-
terization, about 400 kg the iron ore concentrate was prepared as
representative. According to ISO 21283 [16], the proposed strategy
should be carried out on the materials passing through the 1 mm
sieve. As mentioned in the introduction section, according to the
literature [10,13,14], the particle size distribution and the shape
are the most important parameters controlling the Blaine number
of iron ore concentrate. In the literature [15,19,20], there are some
models for describing the relationship between the particle size
distribution and the Blaine number of cement particles (Bc) with
regular geometric shapes. Kuhlmann (1984) proposed Eq. (4) as
following:

BC ¼ 6
q
Xn
i¼1

DQi xi; xiþ1ð Þ
di

ð4Þ
4

where q is the cement density (g cm�3), di is the geometric mean
size of xi and xi+1 (cm), DQi (xi, xi+1) is the difference of the cumula-
tive mass distribution of the ith and (i + 1)th particle size (%), and n is
the number of size fractions. Sumner et al. (1989), proposed Eq. (5)
as following:

BC ¼ 6
q
Xn
i¼1

wiF
100di

� �
ð5Þ

where wi is the weight percentage in size fraction i and F is the sur-
face shape factor (between 1.1 and 1.15). Zhang and Napier-Munn
[15] proposed Eq. (6) as following:

BC ¼ 6
q
Xn
i¼1

wi

xh

� �
ð6Þ

where xh is a harmonic mean size of xi and xi+1 (cm), which calcu-
lated by Eq. (7) [15]:

xh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2iþ1 þ x2i
� �

xiþ1 þ xið Þ
4

3

s
ð7Þ

According to the hypothesis presented in the proposed strategy, it is
assumed that the Blaine number of the iron ore concentrate sample
is a function of the Blaine number of the different particle size frac-
tions that make up the overall sample (Each fraction is assumed as a
particle). Here, a variable of Blaine number type is defined for each
particle size fraction based on two mentioned parameters control-
ling the Blaine number. The mathematical expression of the pro-
posed hypothesis is as follows:

Bi ¼ Volumeshapefactor � Particlesizeð Þ2

¼ Vi

dð�di�1 ;þdiÞ
50

� �3

0
B@

1
CA� dð�di�1 ;þdiÞ

50

� �2
¼ Vi

dð�di�1 ;þdiÞ
50

¼ mi

qid
ð�di�1 ;þdiÞ
50

8i ¼ 1tonþ 1; di�1 > di ð8Þ

BSample ¼ f Bið Þ8i ¼ 1tonþ 1 ð9Þ
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where ‘‘i” is the sieve number or fraction, BSample is the Blaine num-
ber of iron ore concentrate sample (cm2 g�1), Bi is the Blain number
of remaining materials on the ith sieve (cm2 g�1), Vi is the volume of
remaining materials on the ith sieve (cm�3), mi is the mass fraction
of ith sieve or the mass fraction of remaining materials on the ith

sieve, qi is the actual density of remaining materials on the ith sieve
(g cm�3), and d50

(–d
i-1

,+d
i

) is the average particle size of materials pass-
ing through the (i–1)th sieve and remaining on the ith sieve. Here, to
simplify the model, it is assumed that this value is equal to the geo-
metric mean size of two consecutive sieves. But for the first and the
final sieves, this value should be measured (e.g., using a
CAMSIZER�P4).

As can be seen, the particle size distribution is incorporated into
the proposed strategy. On the other hand, usually, the particles
shape is irregular and does not follow the well-known geometric
shapes. Therefore, the volume shape factor was used in the pro-
posed strategy, which is defined as dividing the volume by the
cubic mean diameter of each particle [23–26]. It’s noticeable that
the previously proposed models [15,19,20] are based on the
cement particles with regular geometric shapes, while in the pro-
posed strategy, the particles do not necessarily have a regular geo-
metric shape. Also, the form of the previously proposed models
[15,19,20] is based on linear regression, while in Eq. (9), a function
with an uncertain form is proposed for the Blaine number which is
determined by statistical methods. The proposed strategy for mod-
elling the Blaine number consists of several consecutive steps
(Fig. 4):

(1) Passing the representative sample (about 400 kg) through a
1 mm sieve and dividing the passing particles into different parti-
cle size fractions: according to the manual of Gas Pycnometer [27],
the mass fractions (the materials mass remaining on each sieve)
should be equal to 2/3 of the pycnometer cell volume

(m �di�1 ;þdið Þ / 2
3VolumePyc:Cell );

(2) Measuring the actual density of each sample fraction (qi) by
a Gas Pycnometer (Micromeritics AccuPyc II 1345);

(3) Making an industrial dataset for the Blaine number of each
sample fraction: usually, there is a comprehensive dataset of parti-
cle size distribution for the iron ore concentrate in the laboratory
of the iron ore processing plant over several consecutive years.
Therefore, by using Eq. (8) and the data of the previous step (step
Fig. 4. The proposed strategy for modelling th
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2), it is possible to calculate the Blaine number for each fraction
and, as a result, obtain a comprehensive industrial dataset. The
Blaine number of each fraction is the input variable for the design
of experiments;

(4) Determining the variation range of the Blaine number of
each sample fraction based on the industrial dataset (step 3);

(5) The design of experiments (DOE): DOE is a powerful statis-
tical technique for evaluating the effect of parameters and their
mutual interactions on the responses of experiments [28–30].
One of DOE methods is the response surface method (RSM), which
uses the optimization techniques, the regression analyses and the
local regression models to find a suitable functional relationship
between the independent variables affecting the process (input
variables or factors) and a response. The use of this method has
been widely accepted by engineers in various fields due to the
acceptable performance in solving the complex and multi-
purpose problems [31,32].

The most popular RSM design is the central composite design
(CCD) which is a five-level RSM design. For a CCD, three groups
of design points are needed: (a) the two-level factorial or fractional
factorial design (i.e., a statistical experimental design used to
investigate the effects of two or more independent variables on a
dependent variable [33]) points which are coded as ± 1; (b) the
axial or star points at the distances ± a from experimental points
centers; and (c) the center point which is coded as 0. In other
words, five levels are defined for each factor as (–a, –1, 0, +1, +a).

There are different options in this design, i.e., the factorial core
of CCD, based on the number of factors included in the experiment.
The default option is the largest fraction that will result in the pro-
duction of a design under 1000 runs or maintain at least resolution
V behavior [29,34–36]. Therefore, for six or more factors, the Min-
imum runs resolution-V type (Min Run Res V), i.e., a smaller frac-
tional core, is recommended to save time and money and get the
good estimates with keeping the number of runs under control
[29,34–36].

(6) The analysis of variance (ANOVA): the basis of ANOVA is the
law of total variance, where the observed variance in a special vari-
able is partitioned into components attributable to different varia-
tion sources. In this step, the differences among means are
analyzed by using the statistical models and their associated esti-
e Blaine number of iron ore concentrate.
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mation procedures. The used models are included the fixed-effects
models, the random-effects models and the mixed-effects models.
The fixed-effects models are used when one or more treatments to
the subjects of the experiment is applied to investigate the change
of the response variable values and consequently, to estimate the
range of response variable values that the treatment would gener-
ate in the population as a whole [37].

The random-effects models are used when the various factor
levels are sampled from a larger population and consequently,
the treatments are not fixed. The mixed-effects models contain
experimental factors of both fixed and random-effects types [37].
In this study, the investigated parameters of ANOVA include P-
value (i.e., the probability under the assumption of no effect or
no difference (null hypothesis), of obtaining a result equal to or
more extreme than what was actually observed [35]), F-value
(i.e., a value on the F distribution [35]), the predicted residual error
sum of squares (PRESS), the mean sum of squares of error (MSE),
the R-squared (R2), the adjusted R-squared (R2

adj), and the predicted
R-squared (R2

pre). The R2
adj and the R2

pre should be within approxi-
mately 0.20 of each other to be in reasonable agreement [28,29,37].

(7) Determining the initial model: the appropriate initial model
is statistically determined by comparing the ANOVA (Analysis of
variance) parameters (the step (6)) of the regression models in
the RSM (Eqs. (10) to (13)). In other words, in this step, the appro-
priate model form is determined from among the regression mod-
els of RSM.

(8) Presentation of the proposed model: a set of adjustments
and the different scenarios are applied on the selected initial model
based on analysis of variance to improve the accuracy of ANOVA
parameters (the previous step parameters) and the variance infla-
tion factor (VIF). The VIF measures the upsurge of the variance in
comparison with an orthogonal basis and its value for ith variable
is calculated as following [38,39]:

VIFi ¼ 1
1� R2

i

ð10Þ

where R2i is the coefficient of determination obtained by regressing
the ith predictor on the remaining predictors.

(9) The industrial validation: the proposed model for estimation
of the Blaine number is validated with the industrial data.
Fig. 5. The method of using the propo
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(10) The model sensitivity and reliability analysis under uncer-
tainty: In the experiments, the measurement errors resulting from
different sources (e.g., systematic error, human error, random
error, etc.) can lead to uncertainty in calculations and results
[40–42]. Therefore, the probabilistic and the reliability analysis
under uncertainty is necessary for data validation, calculations,
and results [43–45]. One of the best methods of the probabilistic
and the reliability analysis is the Monte Carlo simulation [46,47],
which simulates the final function using a series of random num-
bers from the probability distribution of the variables and solves
the highly complicated problems with nondeterministic nature
[48,49]. The Monte Carlo simulation is used in many studies due
to the shorter duration, the possibility of optimizing the function,
the simplicity and ease of use, its conformity to different types of
functions, and the lack of need for boundary conditions [43,50–
53]. In the present study, the Monte Carlo simulation was imple-
mented using @RISK software in Excel to analyze the proposed
model under uncertainty.

The Monte Carlo simulation consists of five steps: (1) Determin-
ing the suitable deterministic solver (the suitable regression
model); (2) Determining the input variables for the probabilistic
modeling and quantifying the variations; (3) The random sampling
for each parameter by applying the probability density function:
Each sample is randomly selected from the range of input data dis-
tribution [49,54]. The performance distribution function and the
failure probability are determined by applying the output data. In
a Monte Carlo simulation, subsequent calculations are carried out
by using numbers, which are generated for each parameter based
on the probability distribution functions (e.g., the normal distribu-
tion, the Poisson distribution, and the log-normal distribution). In
the Monte Carlo simulation, usually, the stability of the final results
is obtained with more iterations (e.g., 10,000 iterations) [49,54];
(4) Solving the problem by applying the deterministic analysis,
and (5) Repeating steps (3) and (4) until an adequate number of
simulations is obtained.
2.5. The method of using the proposed model for unknown samples

To use the obtained model for unknown samples, several steps
must be done (Fig. 5): (1) Measuring the actual density of the sam-
sed model for unknown samples.
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ple (q) by a Gas Pycnometer; (2) Determining the particle size dis-
tribution of the sample and the mass fractions (mi); (3) Reconciling
the actual density of each sample fraction (qi) with the data recon-
ciliation technique and the values of q and mi: the data reconcilia-
tion is a widely used technique to calculate the unmeasured
variables and increase the accuracy of the measured variables by
an optimization approach and minimizing the objective function.
If the reconciled values for the actual density of each sample frac-
tion are displayed as q’

i, the mathematical expression of the data
reconciliation technique can be written as follows [55,56]:

min
q
Â�
i

q�
Pn

i¼1 miq
Â�

i

� �
Pn

i¼1mi

0
BB@

1
CCA

2

by changing qisubject to q
Â�

i > 0 ð11Þ

where n is the number of sieves used in the particle size analysis.
Usually, the Eq. (11) is solved by the fmincon solver in MATLAB
or the solver in Excel; (4) Placing the reconciled values for the actual
density of each sample fraction in the proposed model and calculat-
ing the Blaine number.
3. Results and discussion

3.1. Sample characterization

In Fig. 6 (Left), the XRD results showed that the dominant min-
eral in the iron ore concentrate is magnetite (Fe3O4) with a small
amount of clinochlore (Mg5Al (AlSi3O10) (OH)8), quartz (SiO2) and
pyrite (FeS2). The Fig. 6 (Right) is the analysis of the sample mor-
phology by scanning electron microscope (SEM). The SEM results
showed that the particles don’t have a regular geometric shape.

3.2. Modelling the Blaine number by the proposed strategy

As mentioned in the section of materials and methods, the pro-
posed strategy for modelling the Blaine number consists of 10
steps. The results of each stage are as follows:

(1) Passing the representative sample (about 400 kg) through a
1 mm sieve and dividing the passing particles into different parti-
cle size fractions by sieves of 500 lm, 355 lm, 250 lm, 180 lm,
125 lm, 90 lm, 63 lm, 45 lm and –45 lm (under 45 lm).
Fig. 6. (Left) XRD and (Right) SEM of iron ore concentrate obtained from the

Table 1
The actual density and d50 of each sample fraction.

Particle size fraction (lm) +500 +355–500 +250–355 +180

d50 (lm) 500 421.3 297.9 212.
Actual density qi (g cm�3) 3.83 3.81 4.17 4.
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(2) Measuring the actual density of each sample fraction with 4
repetitions (Table 1): The accuracy of themeasured values was con-

firmed by establishing the equation
Pn

i¼1
miqiPn

i¼1
mi

¼ qsample. qsample is the

actual density of the overall sample passing through the 1mmsieve.
(3) Making an industrial dataset for the Blaine number of each

sample fraction by using a comprehensive dataset of particle size
distribution for the iron ore concentrate in the laboratory of the
iron ore processing plant, Eq. (8) and the obtained actual density
for each sample fraction. In Eq. (8), it’s noticeable that d50 for each
sample fraction is equal to the geometric mean size of two consec-
utive sieves (Table 1); for example, d50 for the particle size fraction
of (+355 –500) is considered equal to 421.3 lm. For the particle
size fractions of (+500 lm) and (–45 lm), d50 were measured by
using a CAMSIZER�P4 that their values were equal to about
506 lm and 21 lm. Therefore, for simplicity, their values were
considered equal to 500 lm and 22.5 lm.

(4) Determining the variation range of variables (the Blaine
number of each sample fraction) based on the industrial dataset
obtained in the step 3 and normalizing the variables (Table 2).

(5) Design of experiments: The five-level nine-variable CCD and
the Minimum runs resolution-V type (Min Run Res V) is designed
to describe the response surfaces with 64 experiments and 6 rep-
etitions with central points. To prepare the sample required for
each designed experiment, first mi (mass) was calculated for each
variable by Eq. (8). Then,ms (the required sample mass for measur-
ing the Blaine number) was calculated by Eq. (1). It was observed
that the value of

Pn
i¼1mi is not equal to the value of ms. Therefore,

the value of mi for each variable was modified (mi
’) by using the

ratio of mimsPn

i¼1
mi

so that
Pn

i¼1m
0
i ¼ ms. It is important to mention that

for each experiment, three samples were prepared to ensure the
high accuracy of Blaine number measurement. Moreover, the sim-
ilarity of samples in terms of particle size distribution was evalu-
ated and controlled using a CAMSIZER�P4. After preparing the
samples, their Blaine number was measured. The part of CCD with
the coded/actual values (input variables) and the results of Blaine
number were given in Table 3.

(6) The analysis of variance (ANOVA): In order to construct the
linear, 2FI, quadratic, and cubic response surfaces of the Blaine
number, the output of the RSM models were statistically analyzed
and the parameters of ANOVA were calculated (Table 4).
iron ore processing plant of Gohar Zamin Iron Ore Company, Sirjan-Iran.

–250 +125–180 +90–125 +63–90 +45–63 –45

1 150.0 106.1 75.3 53.2 22.5
78 4.99 5.00 5.00 4.99 4.94



Table 2
Coded and actual levels of input variables (the variation range of variables).

Particle size
fraction (lm)

Variable
(cm2 g�1)

–a –1 0 +1 +a

+500 B1 0.00 0.10 0.20 0.30 0.40
+355–500 B2 0.00 0.03 0.05 0.07 0.10
+250–355 B3 0.00 0.07 0.15 0.23 0.30
+180–250 B4 0.10 0.25 0.40 0.55 0.70
+125–180 B5 0.30 0.92 1.55 2.17 2.80
+90–125 B6 0.40 1.67 2.95 4.22 5.50
+63–90 B7 0.40 2.62 4.85 7.07 9.30
+45–63 B8 0.00 1.83 3.65 5.47 7.30
–45 B9 21.70 31.00 40.30 49.60 58.90
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(7) Determining the initial model: As seen in Table 4, the values
of R-squared for the RSM models of linear, 2FI, quadratic and cubic
are 0.6474, 0.9926, 0.9976, and 0.9993, respectively. Obviously, the
linear model is not the suitable model to estimate the Blaine num-
ber. By comparing the R2

adj and the R2
pre of the remaining models, it’s

found that their difference for the models of 2FI and cubic is more
than 0.2. Therefore, the appropriate initial model is the quadratic,
which for the present work was written as following:

BlainenumberQuadratic ¼ 917:04� 823:18B1� 8580:06B2

þ 1699:87B3þ 1414:77B4

� 154:95B5� 67:76B6� 139:49B7

þ 46:56B8þ 22:23B9þ 10598:85B1

� B2� 1896:72B1� B3� 4088:99B1

� B4þ 766:72B1� B5þ 167:31B1

� B6þ 226:66B1� B7� 142:60B1

� B8� 2:42B1� B9� 7771:88B2

� B3þ 10125:42B2� B4� 976:18B2

� B5þ 1232:55B2� B6þ 40:82B2

� B7þ 670:43B2� B8� 40:67B2

� B9þ 268:84B3� B4� 993:61B3

� B5� 439:83B3� B6þ 268:98B3

� B7� 299:41B3� B8þ 38:54B3

� B9� 259:70B4� B5� 171:56B4

� B6þ 3:56B4� B7� 74:79B4� B8

� 3:65B4� B9þ 13:92B5� B6

þ 5:99B5� B7þ 23:54B5� B8

þ 0:26B5� B9� 0:13B6� B7

� 0:79B6� B8þ 0:69B6� B9

� 4:16B7� B8þ 0:85B7� B9

� 0:34B8� B9þ 20:95 B1ð Þ2

þ 1935:26 B2ð Þ2 � 873:86 B3ð Þ2

þ 70:42 B4ð Þ2 þ 29:66 B5ð Þ2

� 0:56 B6ð Þ2 � 0:01 B7ð Þ2 þ 1:49ðB8Þ2

� 0:17ðB9Þ2 ð12Þ
(8) Presentation of the proposed model: By removing some not-
significant (p-value > 0.05) parameters of the quadratic model
(Eq. (12)) and controlling the variance inflation factor (VIF), simul-
taneously, the proposed model for the estimation of the Blaine
number (cm2 g�1) can be written as Eq. (13):
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Blainenumber ¼ 941:88� 914:82B1� 8322:40B2

þ 1365:69B3þ 1359:41B4� 154:06B5

� 38:97B6� 136:93B7þ 50:80B8

þ 20:31B9þ 10904:39B1� B2

� 1590:50B1� B3� 4161:46B1� B4

þ 770:40B1� B5þ 173:50B1� B6

þ 219:14B1� B7� 147:43B1� B8

� 7002:38B2� B3þ 10447:69B2� B4

� 899:18B2� B5þ 1199:57B2� B6

þ 655:99B2� B8� 44:21B2� B9

� 1014:51B3� B5� 436:96B3� B6

þ 258:80B3� B7� 296:40B3� B8

þ 41:77B3� B9� 228:93B4� B5

� 176:48B4� B6� 79:49B4� B8

þ 10:37B5� B6þ 7:40B5� B7þ 22:66B5

� B8� 5:23B7� B8þ 0:97B7� B9

þ 30:28 B5ð Þ2 � 0:17ðB9Þ2 ð13Þ
The results of ANOVA and the VIF of parameters were presented

in Table 5. According to the results of ANOVA, the p-value of the
proposed model is less than 0.05 (<0.0001), which means a high
accuracy for the prediction of Blaine number. Moreover, the values
of F-value and p-value for lack of fit are 1.08 and 0.5214, respec-
tively. Therefore, the proposed model can be very satisfactory.
Based on the values of F-value and p-value, the B9 is the most effec-
tive parameter influencing the Blaine number of iron ore concen-
trate. According to Table 2, the B9 is the representative of the
Blaine number of particles belonging to the particle size fraction
under 45 lm (–45 lm). Accordingly, this parameter can play the
most important role on the Blaine number of total sample due to
the high mass of particles belonging to this fraction in the total
sample (more than 30 %), having the highest specific surface area
of particles in this particle size fraction, the smallest particle
dimensions and as a result, reducing porosity and increasing the
air passage time along the cell of the Blaine meter.

According to Table 5, the B1 and the B2 don’t have a significant
effect on the Blaine number of total sample. According to Table 2,
the B1 and the B2 are the representative of the Blaine number of
particles belonging to the particle size fraction over 500 lm
(+500 lm) and + 355–500 lm, respectively. The non-significant
effect of these parameters can be due to the low mass of particles
belonging to these fractions in the total sample (less than 0.5 %). It
is necessary to explain, although these particles alone do not have
a significant effect on the Blaine number of total sample, but their
presence together with other particles has a significant effect on
the porosity and the Blaine number of total sample (Table 5). For
this reason, the B1 and the B2 were not removed from the proposed
model.

As seen in Table 5, the VIF of parameters are less than 2, pre-
senting a high goodness of fit for the proposed model. Generally,
the VIF more than five can indicate a severe multi–collinearity.
The other parameters of ANOVA for the proposed model are:
Degree of freedom (df) = 37, MSE = 71037.67, Adequate preci-
sion = 54.74, PRESS = 75380.04, R2 = 0.9953, R2

adj = 0.9900, and
R2
pre = 0.9715. As seen, the obtained results for the proposed model,

compared to the quadratic model (Eq. (12)), indicate the higher
accuracy of the proposed model.

Fig. 7 is a perturbation plot which illustrates the effect of all the
factors at the center point in the design space. It is evident from



Table 3
Part of CCD consisting of the nine input variables (coded) and the results of Blaine number.

Run no. Input variables (cm2g�1) Response (cm2g�1)

B1 B2 B3 B4 B5 B6 B7 B8 B9 Blaine number

1 -a 0 0 0 0 0 0 0 0 1066
2 0 0 0 0 0 -a 0 0 0 1217
3 0 0 0 0 0 0 0 0 -a 701
4 +1 +1 �1 �1 �1 +1 +1 �1 �1 941
5 �1 +1 �1 �1 �1 +1 +1 �1 +1 923
6 +1 +1 +1 +1 +1 �1 +1 �1 �1 948
7 +1 �1 �1 +1 +1 �1 �1 �1 �1 1018
8 0 0 0 0 0 a 0 0 0 865
9 +1 +1 �1 +1 +1 �1 �1 +1 +1 1250
10 +1 �1 �1 �1 �1 �1 +1 +1 �1 855
11 0 0 0 0 -a 0 0 0 0 1151
12 +1 +1 +1 +1 +1 +1 �1 �1 �1 630
13 +1 �1 +1 +1 +1 +1 �1 +1 +1 705
14 �1 +1 +1 �1 +1 �1 �1 +1 +1 1100
15 �1 +1 �1 �1 +1 �1 +1 +1 +1 1012
16 0 0 0 0 0 0 0 -a 0 1120
17 0 0 0 0 0 0 a 0 0 938
18 �1 �1 �1 �1 +1 +1 �1 +1 +1 1372
19 0 0 0 0 a 0 0 0 0 1031
20 0 0 0 0 0 0 0 0 0 1094
21 0 a 0 0 0 0 0 0 0 1058
22 0 0 0 -a 0 0 0 0 0 1078
23 0 0 0 0 0 0 0 0 0 1062
24 +1 �1 �1 +1 �1 +1 �1 +1 �1 658
25 �1 �1 +1 �1 +1 +1 �1 �1 �1 736
26 0 -a 0 0 0 0 0 0 0 1041
27 �1 �1 �1 +1 +1 +1 +1 �1 +1 940
28 +1 �1 +1 �1 +1 �1 +1 +1 +1 1389
29 0 0 0 0 0 0 0 0 0 1076
30 0 0 0 0 0 0 -a 0 0 1151
31 +1 +1 +1 +1 �1 �1 �1 +1 �1 902
32 �1 +1 +1 +1 +1 �1 �1 +1 �1 990
33 �1 �1 �1 +1 �1 +1 +1 +1 +1 918
34 +1 +1 +1 �1 �1 �1 +1 �1 +1 1401
35 0 0 0 0 0 0 0 0 0 1045
36 +1 �1 �1 +1 �1 �1 +1 �1 +1 1156
37 �1 �1 +1 �1 +1 �1 +1 �1 �1 923
38 �1 �1 �1 �1 �1 �1 �1 �1 �1 1167
39 �1 +1 +1 �1 �1 �1 �1 �1 �1 1019
40 +1 �1 +1 +1 +1 +1 +1 �1 �1 680
41 �1 �1 +1 �1 �1 +1 +1 �1 +1 1250
42 0 0 0 0 0 0 0 0 a 1268
43 +1 +1 �1 �1 �1 +1 �1 +1 +1 1306
44 0 0 0 0 0 0 0 a 0 1009
45 �1 �1 +1 +1 +1 +1 +1 +1 +1 827
46 0 0 a 0 0 0 0 0 0 987
47 �1 �1 +1 �1 �1 �1 �1 +1 �1 1190
48 �1 �1 �1 +1 +1 �1 +1 +1 �1 910
49 0 0 -a 0 0 0 0 0 0 1063

50 +1 +1 �1 +1 +1 +1 +1 +1 �1 962
51 �1 +1 �1 +1 �1 �1 �1 �1 +1 1438
52 +1 �1 �1 +1 �1 +1 �1 �1 +1 1006
53 �1 +1 +1 +1 �1 +1 �1 +1 +1 1258
54 +1 +1 +1 �1 �1 +1 +1 +1 �1 805
55 +1 �1 +1 �1 �1 �1 �1 �1 �1 1143
56 0 0 0 0 0 0 0 0 0 1048
57 0 0 0 0 0 0 0 0 0 1052
58 +1 +1 �1 �1 +1 �1 �1 +1 �1 1216
59 +1 +1 +1 �1 +1 +1 +1 �1 +1 1296
60 �1 +1 �1 +1 �1 +1 +1 +1 �1 856
61 �1 +1 �1 �1 +1 +1 �1 �1 �1 850
62 +1 �1 �1 �1 �1 �1 �1 +1 +1 1223
63 �1 �1 +1 +1 +1 �1 �1 �1 +1 1425
64 �1 �1 +1 +1 �1 +1 +1 �1 �1 866
65 a 0 0 0 0 0 0 0 0 1025
66 �1 �1 �1 �1 +1 +1 +1 +1 �1 785
67 +1 +1 �1 �1 +1 �1 �1 �1 +1 1215
68 +1 +1 +1 +1 �1 +1 +1 �1 +1 1284
69 �1 +1 +1 +1 �1 �1 +1 +1 +1 1430
70 0 0 0 a 0 0 0 0 0 1024
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Table 4
The parameters of ANOVA for the RSM models of the Blaine number.

Response surface model Degree of freedom MSE F-value P-value Adequate precision PRESS R2 Radj
2 Rpre

2

Linear 9 190,000 12.24 < 0.0001 13.65 1,382,000 0.6474 0.5946 0.4766
2FI 45 58246.89 71.43 < 0.0001 34.23 408,100 0.9926 0.9787 0.7551
Quadratic 54 48784.55 115.90 < 0.0001 43.56 646,800 0.9976 0.9890 0.8454
Cubic 61 43259.71 188.35 < 0.0001 55.16 1,020,000 0.9993 0.9940 0.6139

Table 5
Part results of ANOVA and the VIF of parameters for the proposed model.

Source F-value P-value VIF Source F-value P-value VIF

Propose model 185.03 < 0.0001 – B2�B5 15.34 0.0004 1.54
B1 1.73 0.1979 1.44 B2�B6 90.00 < 0.0001 1.94
B2 3.71 0.0629 1.54 B2�B8 76.06 < 0.0001 1.41
B3 48.07 < 0.0001 1.55 B2�B9 8.03 0.0079 1.57
B4 29.12 < 0.0001 1.46 B3�B5 176.75 < 0.0001 1.53
B5 79.66 < 0.0001 1.44 B3�B6 142.88 < 0.0001 1.46
B6 666.55 < 0.0001 1.42 B3�B7 143.50 < 0.0001 1.56
B7 272.56 < 0.0001 1.32 B3�B8 140.33 < 0.0001 1.39
B8 48.53 < 0.0001 1.48 B3�B9 61.41 < 0.0001 1.65
B9 2173.13 < 0.0001 1.31 B4�B5 39.02 < 0.0001 1.41
B1�B2 59.13 < 0.0001 1.49 B4�B6 96.58 < 0.0001 1.40
B1�B3 11.13 0.0022 1.53 B4�B8 39.14 < 0.0001 1.45
B1�B4 299.37 < 0.0001 1.56 B5�B6 4.81 0.0357 1.70
B1�B5 187.14 < 0.0001 1.48 B5�B7 8.72 0.0059 1.45
B1�B6 33.61 < 0.0001 1.74 B5�B8 50.92 < 0.0001 1.57
B1�B7 167.91 < 0.0001 1.69 B7�B8 38.89 < 0.0001 1.39
B1�B8 60.08 < 0.0001 1.44 B7�B9 32.77 < 0.0001 1.48
B2�B3 12.63 0.0012 1.63 (B5)2 12.94 0.0011 1.02
B2�B4 106.18 < 0.0001 1.73 (B9)2 20.26 < 0.0001 1.02
Lack of Fit 1.08 0.5214 – – – – –

Fig. 7. Perturbation plot showing the effect of all factors on the Blaine number.
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Fig. 7 that both the B1 and the B2 don’t have a significant effect on
the Blaine number of total sample. It is apparent that the B9 (the
Blaine number of particles belonging to the particle size fraction
under 45 lm) has the significant positive linear effect on the Blaine
number of total sample (Fig. 7). This means that the Blaine number
of total sample increases as the B1 level increases, which was in
accord with the results reported by Abazarpoor et al. [13] and Hos-
seini Nasab and Sadeghi [14].

Fig. 8 is the contours plots showing the interaction effects of
some variables on the Blaine number, which can be analyzed based
on their effect on porosity. For example, Fig. 8a is contours plot
Fig. 8. Contours plots showing interaction effects of (a) B1 and B4, (b)

11
illustrating the interaction effect, which is found out only through
design of experiments [57], between the B1 (the representative of
the Blaine number of particles + 500 lm) and the B4 (the represen-
tative of the Blaine number of particles + 180–250 lm) on the
Blaine number. As seen in Fig. 8a, in the low values of the B1

(0.10 cm2 g�1), increasing the B4 from 0.25 cm2 g�1 to 0.55 cm2

g�1 result in a significant increase in Blaine number from about
1012 cm2 g�1 to 1101 cm2 g�1. This behavior may be due to the fact
that in the presence of low number of coarse particles (+500 lm),
an increase in fine particles would result in a significant decrease
in porosity and, as a result, an increase in Blaine number. Also, in
B3 and B5, (c) B3 and B6, and (d) B3 and B8 on the Blaine number.



Fig. 9. The comparison of the Blaine number predicted by the proposed model (Left) and the quadratic model (Right).

Table 6
The properties of input parameters in the uncertainty’s simulation.

Variable Probability
distribution
function

Minimum Maximum Mean Standard
deviation

Skewness Kurtosis

B1 Loglogistic 0.000 2.195 0.013 0.037 0.001 32.293
B2 Weibull 0.000 0.053 0.019 0.008 0.000 0.307
B3 Weibull 0.017 0.181 0.081 0.026 0.001 0.253
B4 Weibull 0.023 0.582 0.362 0.080 0.006 –0.364
B5 Weibull 0.337 2.267 1.699 0.238 0.056 –0.977
B6 Loglogistic 1.954 6.497 2.929 0.290 0.084 1.259
B7 Loglogistic 2.246 9.365 3.961 0.556 0.309 1.054
B8 Triangular 0.005 5.822 3.515 1.332 1.774 –0.500
B9 Loglogistic 25.255 72.422 35.959 2.975 8.850 1.001
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the high values of the B1 (0.30 cm2 g�1), increasing the B4 would
result in a significant decrease in Blaine number from about
1128 cm2 g�1 to 970 cm2 g�1. This behavior may be due to the fact
that the presence of high number of coarse particles (+500 lm)
would result in an increase in porosity and overcome the positive
effect of fine particles on increasing the Blaine number.

(9) The industrial validation: In order to evaluate the validity of
the proposed model, it was used for estimating the Blaine number
of 228 samples of iron ore concentrate collected from Gohar Zamin
Iron Ore Company, Gol-e-Gohar Mining & Industrial Company, and
Chadormalu Mining and Industrial Company. It’s noticeable that
the data for 228 samples, including the particle size distribution,
the actual density and the Blaine number, were received from
these companies. The proposed model was implemented based
on the method introduced in the section of ’’the method of using
the proposed model for unknown samples’’ and Fig. 5. The compar-
ison of the obtained results of the proposed model and the quadra-
tic model (Eq. (12)) was shown in Fig. 9. As it can be seen, the R-
square for the proposed model (i.e., 0.9793) is of priority in relation
to the quadratic model (i.e., 0.3297), which shows the high accu-
racy of the proposed model for estimating the Blaine number of
iron ore concentrate.

(10) The model sensitivity analysis under uncertainty: Gener-
ally, the measurement errors resulting from different sources can
12
lead to uncertainty in results. The Monte Carlo simulation was
used to analyze the reliability of the proposed model for estimating
the Blaine number under uncertainty. According to the industrial
data (Fig. 9), the type and the properties of the probability distribu-
tion function were determined for each significant operational
parameter (Table 6). As shown in Table 6, the distribution function
of B1, B6, B7, and B9 is a Loglogistic function, the distribution func-
tion of B2, B3, B4, and B5 is a Weibull function, and the distribution
function of B8 is a Triangular function. Then, the simulation was
run by using Eq. (13) with the iteration of 10000. According to
Fig. 10, the mean Blaine number is 1011.156 cm2 g�1 while the val-
ues of standard deviation, minimum, and maximum are 51.440,
829.119, and 1611.414 cm2 g�1, respectively. As seen, the probabil-
ity distribution function of the Blaine number follows the loglogis-
tic distribution function.

In Fig. 11, the results of probability analysis for the Blaine num-
ber were showed. For example, according to Fig. 11, there is a prob-
ability of only 2.5 % for the Blaine number to be smaller than or
equal to 920 cm2 g�1 in different experiments. Besides, the values
of Blaine number smaller than or equal to 1097 cm2 g�1 could be
obtained with a probability of 95 % in the different experiments.
The values of Blaine number smaller than or equal to 1059 cm2

g�1 could also be obtained with a probability of 85 %. Therefore,
the results probability of different tests leading to the values of



Fig. 10. The histogram and statistical results of simulation for the Blaine number of iron ore concentrates.

Fig. 11. The cumulative distribution function for the Blaine number of iron ore concentrates.
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Blaine number between 1059 cm2 g�1 and 1097 cm2 g�1 is 10 %. In
other words, the uncertainty of the achieving a Blaine number
more than 1097 cm2 g�1 is 5 %.
4. Conclusions

One of the most important parameters for controlling the pel-
letizing process in the iron and steel chain is the Blaine number
13
or the specific surface area of iron ore concentrate. The conven-
tional methods of measuring the Blaine number of iron ore concen-
trate have important challenges such as a long time required from
sample preparation to Blaine test, human and systematic errors,
high consumption of expensive CRM for daily calibration of the
Blaine meter, and the Blaine meter sensitivity to the environmental
conditions. To solve the mentioned challenges and limitations, a
comprehensive strategy was proposed based on the particle size
distribution and shape (controlling the Blaine number) by
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combination of Response surface methodology and Monte Carlo
simulation. After implementing the proposed strategy for the con-
centrate obtained from the iron ore processing plant of Gohar
Zamin Iron Ore Company, the obtained model was validated by
using 228 industrial data from Gohar Zamin Iron Ore Company,
Gol-e-Gohar Mining & Industrial Company, and Chadormalu Min-
ing and Industrial Company. The R-square for the proposed model
(i.e., 0.9793) was of priority in relation to the quadratic model (i.e.,
0.3297). The results showed that in the low values of the B1 as the
representative of the Blaine number of particles + 500 lm
(0.10 cm2 g�1), increasing the B4 (the representative of the Blaine
number of particles + 180–250 lm) from 0.25 cm2 g�1 to
0.55 cm2 g�1 result in a significant increase in Blaine number from
about 1012 cm2 g�1 to 1101 cm2 g�1. Moreover, in the high values
of the B1 (0.30 cm2 g�1), increasing the B4 would result in a signif-
icant decrease in Blaine number from about 1128 cm2 g�1 to
970 cm2 g�1. Finally, the proposed model under uncertainty was
analyzed using Monte Carlo simulation. The results showed that
the probability of different tests leading to the values of Blaine
number between 1059 cm2 g�1 and 1097 cm2 g�1 is 10 %. In other
words, the uncertainty of the achieving a Blaine number more than
1097 cm2 g�1 was 5 %. According to the obtained results, the pro-
posed strategy and obtained model can be used as a powerful and
relatively accurate technique for modelling and predicting the
Baline number of iron ore concentrate produced in industrial
plants and a suitable alternative to the conventional measurement
methods.

CRediT authorship contribution statement

Seyed Hadi Shahcheraghi: Conceptualization, Investigation,
Methodology, Project administration, Software, Writing - original
draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research was supported by Gohar Zamin Iron Ore Com-
pany, especially Managing Director (i.e., Dr. Mohammad Mahya-
pour), Deputy of Operation (i.e., Mr. Amin Fathi), and the
Laboratory and Quality Control Unit, which is gratefully
acknowledged.

Funding

This work was supported by Gohar Zamin Iron Ore Company
[grant number 10860541940].

References

[1] J. Pal, S. Ghorai, T. Venugopalan, Effect of high Blaine iron ore fines in hematite
ore pelletization for blast furnace, Miner. Process. Extr, Metall. 129 (2020)
299–307, https://doi.org/10.1080/25726641.2018.1505208.

[2] D.K. Gorai, S. Saida, K.D. Mehta, B.K. Singh, Effect of Blaine Number on the
Physical and Mechanical Properties of Iron Ore Pellets, J. Inst. Eng. (india) D
(2022) 1–11, https://doi.org/10.1007/s40033-022-00374-6.

[3] S.N. Sahu, P.K. Baskey, S.D. Barma, S. Sahoo, B. Meikap, S.K. Biswal, Pelletization
of synthesized magnetite concentrate obtained by magnetization roasting of
Indian low-grade BHQ iron ore, Powder Technol. 374 (2020) 190–200, https://
doi.org/10.1016/j.powtec.2020.07.004.

[4] K. Barik, P. Prusti, S. Soren, B. Meikap, S. Biswal, Analysis of iron ore pellets
properties concerning raw material mineralogy for effective utilization of
mining waste, Powder Technol. 400 (2022), https://doi.org/10.1016/j.
powtec.2022.117259 117259.
14
[5] D. Safonov, T. Kinnarinen, A. Häkkinen, An assessment of Blaine’s air
permeability method to predict the filtration properties of iron ore
concentrates, Miner. Eng. 160 (2021), https://doi.org/10.1016/j.
mineng.2020.106690 106690.

[6] Y. Ghasemi, M. Emborg, A. Cwirzen, Estimation of specific surface area of
particles based on size distribution curve, Mag. Concr. Res. 70 (2018) 533–540,
https://doi.org/10.1680/jmacr.17.00045.

[7] B.A. Wills, J. Finch, Wills’ mineral processing technology: an introduction to the
practical aspects of ore treatment and mineral recovery, Butterworth-
Heinemann, 2015.

[8] J. Pal, S. Ghorai, S. Agarwal, B. Nandi, T. Chakraborty, G. Das, S. Prakash, Effect of
blaine fineness on the quality of hematite iron ore pellets for blast furnace,
Miner. Process. Extr. Metall. Rev. 36 (2015) 83–91, https://doi.org/10.1080/
08827508.2013.873862.

[9] R.R. Rhinehart, Nonlinear regression modeling for engineering applications:
modeling, model validation, and enabling design of experiments, John Wiley &
Sons, 2016.

[10] A. Abazarpoor, M. Halali, R. Hejazi, M. Saghaeian, V.S. Zadeh, Investigation of
iron ore particle size and shape on green pellet quality, Can. Metall. Q. 59
(2020) 242–250, https://doi.org/10.1080/00084433.2020.1730116.

[11] F.P. Van Der Meer, Pellet feed grinding by HPGR, Miner. Eng. 73 (2015) 21–30,
https://doi.org/10.1016/j.mineng.2014.12.018.

[12] R. Prasad, R. Venugopal, L. Kumaraswamidhas, C. Pandey, S. Pan, Analysis of
the Influence of Blaine Numbers and Firing Temperature on Iron Ore Pellets
Properties Using RSM-I-Optimal Design: An Approach Toward Suitability, Min.
Metall. Explor. 37 (2020) 1703–1716, https://doi.org/10.1007/s42461-020-
00282-x.

[13] A. Abazarpoor, M. Halali, R. Hejazi, M. Saghaeian, HPGR effect on the particle
size and shape of iron ore pellet feed using response surface methodology,
Miner. Process. Extr, Metall. 127 (2018) 40–48, https://doi.org/10.1080/
03719553.2017.1284414.

[14] M. Hosseini-Nasab, M.H. Sadeghi, Effect of Particle Size Distribution and Type
of Mineral on the Blaine Number, Int. J. Min. Geo-Eng. 54 (2020) 51–57.
https://doi.org/10.22059/ijmge.2019.260347.594747.

[15] Y. Zhang, T. Napier-Munn, Effects of particle size distribution, surface
area and chemical composition on Portland cement strength,
Powder Technol. 83 (1995) 245–252, https://doi.org/10.1016/0032-5910(94)
02964-P.

[16] Iso-21283,, Iron ores — Determination of specific surface area — Test method
using airpermeability apparatus (Blaine), The International Organization for
Standardization (2018).

[17] Astm-c204-16,, Standard Test Methods for Fineness of Hydraulic Cement by
Air-Permeability Apparatus, ASTM International, 2017.

[18] I. Odler, The BET-specific surface area of hydrated Portland cement and related
materials, Cem. Concr. Res. 33 (2003) 2049–2056, https://doi.org/10.1016/
S0008-8846(03)00225-4.

[19] K. Kuhlmann, Correlation of cement particle size and surface area, Zem 37
(1984) 257–259.

[20] M. Sumner, N. Hepher, G. Moir, The influence of a narrow cement particle size
distribution on cement paste and concrete water demand, Ciments, bétons,
plâtres, chaux, (1989) 164-168.

[21] H. Binici, O. Aksogan, I.H. Cagatay, M. Tokyay, E. Emsen, The effect of particle
size distribution on the properties of blended cements incorporating GGBFS
and natural pozzolan (NP), Powder Technol. 177 (2007) 140–147, https://doi.
org/10.1016/j.powtec.2007.03.033.

[22] ISO-3082, Iron ores — Sampling and sample preparation procedures, 2017.
[23] D.S. Rao, Textbook of Mineral Processing, Scientific Publishers, 2017.
[24] Y. Waseda, A. Muramatsu, Morphology control of materials and nanoparticles:

advanced materials processing and characterization, Springer Science &
Business Media, 2003.

[25] J. Seville, U. Tüzün, R. Clift, Processing of particulate solids, Springer Science &
Business Media, 2012.

[26] K. Higashitani, H. Makino, S. Matsusaka, Powder technology handbook, CRC
Press, 2019.

[27] AccuPycII-1345-OperatorManual, GAS DISPLACEMENT PYCNOMETER, 2019.
[28] B. Jones, D.C. Montgomery, Design of Experiments: A Modern Approach, Wiley,

2020.
[29] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons,

Limited, 2019.
[30] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface

Methodology: Process and Product Optimization Using Designed
Experiments, Wiley, 2016.

[31] G.E. Box, N.R. Draper, Response surfaces, mixtures, and ridge analyses, John
Wiley & Sons, 2007.

[32] R.V. Rao, Advanced modeling and optimization of manufacturing processes:
international research and development, Springer, 2011.

[33] R. Mukerjee, C.-F. Wu, A modern theory of factorial design, Springer, 2006.
[34] M.J. Anderson, P.J. Whitcomb, RSM simplified: optimizing processes using

response surface methods for design of experiments, Productivity Press
(2016).

[35] R. Mead, S.G. Gilmour, A. Mead, Statistical principles for the design of
experiments: applications to real experiments, Cambridge University Press,
2012.

[36] K. Rekab, M. Shaikh, Statistical design of experiments with engineering
applications, Taylor & Francis Boca Raton, FL, 2005.

[37] C. Hirotsu, Advanced analysis of variance, John Wiley & Sons, 2017.

https://doi.org/10.1080/25726641.2018.1505208
https://doi.org/10.1007/s40033-022-00374-6
https://doi.org/10.1016/j.powtec.2020.07.004
https://doi.org/10.1016/j.powtec.2020.07.004
https://doi.org/10.1016/j.powtec.2022.117259
https://doi.org/10.1016/j.powtec.2022.117259
https://doi.org/10.1016/j.mineng.2020.106690
https://doi.org/10.1016/j.mineng.2020.106690
https://doi.org/10.1680/jmacr.17.00045
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0035
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0035
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0035
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0035
https://doi.org/10.1080/08827508.2013.873862
https://doi.org/10.1080/08827508.2013.873862
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0045
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0045
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0045
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0045
https://doi.org/10.1080/00084433.2020.1730116
https://doi.org/10.1016/j.mineng.2014.12.018
https://doi.org/10.1007/s42461-020-00282-x
https://doi.org/10.1007/s42461-020-00282-x
https://doi.org/10.1080/03719553.2017.1284414
https://doi.org/10.1080/03719553.2017.1284414
https://doi.org/10.22059/ijmge.2019.260347.594747
https://doi.org/10.1016/0032-5910(94)02964-P
https://doi.org/10.1016/0032-5910(94)02964-P
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0080
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0080
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0080
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0085
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0085
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0085
https://doi.org/10.1016/S0008-8846(03)00225-4
https://doi.org/10.1016/S0008-8846(03)00225-4
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0095
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0095
https://doi.org/10.1016/j.powtec.2007.03.033
https://doi.org/10.1016/j.powtec.2007.03.033
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0115
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0115
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0120
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0120
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0120
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0120
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0125
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0125
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0125
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0130
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0130
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0130
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0140
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0140
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0140
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0145
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0145
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0145
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0150
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0150
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0150
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0150
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0155
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0155
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0155
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0160
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0160
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0160
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0165
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0165
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0170
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0170
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0170
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0175
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0175
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0175
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0175
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0180
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0180
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0180
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0185
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0185


S.H. Shahcheraghi, M. Dianatpour and M. Hayati Advanced Powder Technology 34 (2023) 104259
[38] L.S. Meyers, G. Gamst, A.J. Guarino, Applied multivariate research: Design and
interpretation, Sage publications, 2016.

[39] S. Mahdevari, M. Hayati, Finite-difference based response surface
methodology to optimize tailgate support systems in longwall coal mining,
Sci. Rep. 11 (2021) 1–22, https://doi.org/10.1038/s41598-021-82104-8.

[40] B.D. Shaw, Uncertainty analysis of experimental data with R, Chapman and
Hall/CRC, 2017.

[41] H.W. Coleman, W.G. Steele, Experimentation, validation, and uncertainty
analysis for engineers, John Wiley & Sons, 2018.

[42] S.S. Bahga, Experimental Uncertainty Analysis: A Textbook for Science and
Engineering Students, Supreet Singh Bahga (2021).

[43] E. De Rocquigny, Modelling under risk and uncertainty: an introduction to
statistical, phenomenological and computational methods, John Wiley & Sons,
2012.

[44] P. Samui, D.T. Bui, S. Chakraborty, R.C. Deo, Handbook of probabilistic models,
Butterworth-Heinemann, 2019.

[45] R. Willink, Measurement uncertainty and probability, Cambridge University
Press, 2013.

[46] H. Pham, S. Series, Reliab. Eng. (2013).
[47] B. Wu, Reliability analysis of dynamic systems: efficient probabilistic methods

and aerospace applications, Academic Press, 2013.
[48] W.K.V. Chan, Theory and applications of Monte Carlo simulations, BoD–Books

on Demand, 2013.
[49] D.-G. Chen, J.D. Chen, Monte-Carlo simulation-based statistical modeling,

Springer, 2017.
15
[50] D. Price, A. Maile, J. Peterson-Droogh, D. Blight, A methodology for uncertainty
quantification and sensitivity analysis for responses subject to Monte Carlo
uncertainty with application to fuel plate characteristics in the ATRC, Nucl.
Eng. Technol. 54 (2022) 790–802, https://doi.org/10.1016/j.net.2021.09.010.

[51] X. Hu, G. Fang, J. Yang, L. Zhao, Y. Ge, Simplified models for uncertainty
quantification of extreme events using Monte Carlo technique, Reliab. Eng.
Syst. Saf. 230 (2023), https://doi.org/10.1016/j.ress.2022.108935 108935.

[52] G. Xie, A novel Monte Carlo simulation procedure for modelling COVID-19
spread over time, Sci. Rep. 10 (2020) 1–9, https://doi.org/10.1038/s41598-
020-70091-1.

[53] M. Hayati, S.M.S.A. Ganji, S.H. Shahcheraghi, R.R. Khabir, Optimization of
copper recovery from electronic waste using response surface methodology
and Monte Carlo simulation under uncertainty, J. Mater. Cycles Waste Manag.
25 (2023) 211–220, https://doi.org/10.1007/s10163-022-01526-2.

[54] D.P. Kroese, T. Taimre, Z.I. Botev, Handbook of monte carlo methods, John
Wiley & Sons, 2013.

[55] G.P. Rangaiah, A. Bonilla-Petriciolet, Multi-objective optimization in chemical
engineering: developments and applications, John Wiley & Sons, 2013.

[56] D. Sbárbaro, R., Del Villar, Advanced control and supervision of mineral
processing plants, Springer Science & Business Media, 2010.

[57] S.L. Fegade, B.M. Tande, H. Cho, W.S. Seames, I. Sakodynskaya, D.S. Muggli, E.I.
Kozliak, Aromatization of propylene over Hzsm-5: A design of experiments
(DOE) approach, Chem. Eng. Commun. 200 (2013) 1039–1056, https://doi.org/
10.1080/00986445.2012.737385.

http://refhub.elsevier.com/S0921-8831(23)00324-2/h0190
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0190
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0190
https://doi.org/10.1038/s41598-021-82104-8
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0200
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0200
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0200
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0205
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0205
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0205
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0210
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0210
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0215
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0215
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0215
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0215
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0220
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0220
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0220
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0225
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0225
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0225
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0230
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0235
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0235
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0235
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0240
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0240
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0240
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0245
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0245
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0245
https://doi.org/10.1016/j.net.2021.09.010
https://doi.org/10.1016/j.ress.2022.108935
https://doi.org/10.1038/s41598-020-70091-1
https://doi.org/10.1038/s41598-020-70091-1
https://doi.org/10.1007/s10163-022-01526-2
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0270
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0270
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0270
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0275
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0275
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0275
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0280
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0280
http://refhub.elsevier.com/S0921-8831(23)00324-2/h0280
https://doi.org/10.1080/00986445.2012.737385
https://doi.org/10.1080/00986445.2012.737385



	Modelling and estimating the Blaine number of iron ore concentrate by response surface methodology and Monte Carlo simulation
	1 Introduction
	2 Materials and methods
	2.1 Process description of iron ore processing plant
	2.2 Sample preparation and characterization
	2.3 The method of measuring the Blaine number in the laboratory
	2.4 The proposed strategy for modelling the Blaine number
	2.5 The method of using the proposed model for unknown samples

	3 Results and discussion
	3.1 Sample characterization
	3.2 Modelling the Blaine number by the proposed strategy

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Funding
	References


